Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

On-line Sales and data analytics

STUDY GROUP MEMBERS:

R BEKKER, K BORN, I DENHAM-DYSON, P DUMANI, J Julyan, T Lebese, E Netshiunda

SUPERVISED BY J SANDERS

January 13, 2018

・ロット (雪) (日) (日) (日)

1/27

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References
Problem sta	tement				

Design the structure of an on-line store using Z notation, incorporating market analytics.

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References
Overview					

Client	Order	Item
Personal information	Status	Type of items
Log in information	Stock order history	Quantity
Payment information		Cost price
Wishlist		Selling price
Contact information		
Client order history		

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

Figure: User interaction with the store

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで 4/27

Figure: Movement of information and items around the store

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References
Assumptions					

- Financial security
- All orders are dispatched from a single location/warehouse
- Delivery to registered client's address
- After an item is dispatched, the delivery is handled by a courier

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References
The Store					

_Store _____ knownClient : PClient allOrders : POrder Stock : PItem

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

Client. id:IDname : Name email : Email password : Password address : Address cell : Cell financials : Financial *history* : *seq* Order wishlist : \mathbb{P} Item online : \mathbb{B} advertisement : \mathbb{P} Items

Froblem Statem	ent Overview	Assumptions	The Store	Data Analytics	Kelerences
	$_AddClient$	$ c:knownClient\}$ = knownClient $\cup \{nownClient \Rightarrow Error\}$	ew?[wishlist\[], his	story\[], online\0]}	_

Error EStore message! : *seq Chars message*! = User exists

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

```
Login
\Delta Client
user : Client
username?, pass? : seq Chars
\exists user : Client
   user.id = username?
   user.password = pass?
   user.online = 0
   user.online' = 1
```

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

Logout		
$\Delta Client$		
cl? : Client		
cl?.online = 1 cl?.online' = 0		

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

```
\begin{array}{c} Order \\ \hline orderID : OID \\ client : Client \\ time : Time \\ ord : Item \leftrightarrow \mathbb{N}^+ \\ status : paid | dispatched | cancelled \\ successful : Item \leftrightarrow \mathbb{N}^+ \\ orderCost : Currency \end{array}
```

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

PlaceOrder_ $\Delta Store$ order : Order totalCost! : Currency msg! : seq Chars .

```
Problem Statement Overview Assumptions The Store Data Analytics References
```

```
order.time' = CurrentTime
order.orderID' = order.orderID
                  = F(order.client.id, order.time)
\forall i \text{ dom order.ord} \bullet \text{ order.ord}(i) < \text{stock}(i)
    \Rightarrow stock(i) := stock(i) - order.ord(i)
i dom order.ord \bullet order.ord(i) > stock(i)
    \Rightarrow order.client.wishlist' = order.client.wishlist \cup \{i\} \land msg! = i \text{ out of stock}
                                             i.sellingPrice(j) * order.ord(j)
totalCost! =
                             \Sigma
               j \in \{i: Item | order.ord(i) \leq stock(i) \}
             = order.orderCost'
order.client.financials' = order.client.financials - totalCost!
order.status' = paid
order.successful' = \{i : Item \mid order.ord(i) < stock(i)\} \lhd order.ord
order.client.history = order.client.history ++ [order]
```

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

```
CancelOrder
AStore
o? : Order
stock : Items \rightarrow \mathbb{N}^+
o?.status = paid
\forall i: dom(o?.successful) \bullet stock(i) = stock(i) + o?.successful
o?.client.financials' = o?.client.financials + o?.orderCost
o?.client.history' = o?.client.history\[o?]
o?.status' = cancelled
```

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

DispatchOrder $\Delta Order$ do?: Order m!: seq Chars do?.status = paid do?.status' = dispatched m! = Order dispatched

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

```
 \begin{array}{l} EditWishlist \_ \\ \Delta Client \\ wl?: Client \\ newIt?: \mathbb{P} Item \\ trash?: \mathbb{P} Item \\ \hline wl?.wishlist' = wl?.wishlist \cup newIt? \trash? \end{array}
```

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References

__Item _____ itemDetails : *Details quantity* : *Item* $\rightarrow \mathbb{N}$ *costPrice*, *sellingPrice* : *Item* \rightarrow *Currency*

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References
Reord ΔStoc newR Stock	ler ck ?? : Item $\rightarrow \mathbb{N}^+$ $' = Stock \cup net$	vR?			_

```
 \begin{array}{l} EditStock \\ \Delta Stock \\ newS? : Item \rightarrow \mathbb{N}^+ \\ garbage? : \mathbb{P} Item \\ \hline (dom \ Stock) \cap (dom \ newS?) = \emptyset \\ Stock' = garbage? \triangleleft Stock \end{array}
```

CF algorithms provide a way of quantifying preferences and predicting them in order to make recommendations to active users.

- Assuming if users *X* & *Y* both rate *n* items similarly they will have similar behaviours.
- Typically internet sites use a rating system to gauge users preferences. Such as the 5-star rating system of Amazon and Youtube.
- In the future a rating system will be preferable but a binary system is simple and easy to illustrate the task.
 - If the item is in the user history the rating the user has 'given' the product is 1.
 - If it is not, the user has rated it 0.

Client/ID	LOTR	Cinderella	50 Shades of Gray
241	Bought	Ignored	Bought
111	Unknown	Bought	Ignored
81	Bought	Ignored	Bought
Target User	Unknown	Unknown	Bought

Problem Statement Overview Assumptions The Store Data Analytics References
Recommendation system

▲□▶▲□▶▲□▶▲□▶ □ のQで

22 / 27

 $\begin{array}{l} \label{eq:linear_predict_predict_predict_predict_predict} \\ \Delta Client \\ activeClient? : Client \\ Similar : Client \times kc \rightarrow \mathbb{P} \ Items \\ \hline activeClient?.advertisement' = Similar(activeClient?, kc) \end{array}$

But what does the function Similar look like?

Problem Statement Overview Assumptions The Store Data Analytics References
Collaboration vs Content

- Collaboration
- Content
- Hybrids

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References
Measures of sameness					

A typical method is to use correlation although dot products can be used too.

$$w_{u,v} = \frac{\sum_{i \in I} (r_{u,i} - \bar{r}_u) (r_{v,i} - \bar{r}_v)}{\sqrt{\sum_{i \in I} (r_{u,i} - \bar{r}_u)^2} \sqrt{\sum_{i \in I} (r_{v,i} - \bar{r}_v)^2}}$$
(1)

These weights can be used to predict a user's rating of an item.

- Data Sparsity: Spread and 'cold start' problems
 - Coverage
 - Neighbourhood transitivity
- Scalability
- Synonymy
- Gray and black sheep
- Shilling attacks

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References
Future work					

- Ranking architecture that is not boolean.
- Response systems to adverts (Not interested).
- Search history.
- Seasonal aspects.
- Current Affairs.
- Leverage off client details.
- Feature extraction.

Problem Statement	Overview	Assumptions	The Store	Data Analytics	References
References					

• Su X, Khoshgoftaar T M. A Survey of Collaborative Filtering Techniques. Advances in Artificial, Vol 2009 (2009).